
Abstract
CHANCHAN, PRAKASH. An Algorithm for Computing the Perron Root of a Nonnegative
Irreducible Matrix. (Under the direction of Carl D. Meyer.)

We present a new algorithm for computing the Perron root of a nonnegative irreducible

matrix. The algorithm is formulated by combining a reciprocal of the well known Collatz’s

formula with a special inverse iteration algorithm discussed in [10, Linear Algebra Appl.,

15 (1976), pp 235-242 ]. Numerical experiments demonstrate that our algorithm is able

to compute the Perron root accurately and faster than other well known algorithms; in

particular, when the size of the matrix is large. The proof of convergence of our algorithm

is also presented.
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Chapter 1

Introduction

Nonnegative matrices are often used to describe the behavior of many science and math-

ematical models which are involved in multiplicative processes. In a multiplicative process,

we begin by multiplying a nonnegative input vector x(0) to a square nonnegative matrix A

in order to obtain an output vector x(1). Then we use the vector x(1) as a new input vector

and multiply it to A to get x(2). By continuing this process over some amount of time, the

resulting vector is in fact an eigenvector corresponding to the spectral radius of A. If A is

nonnegative and irreducible then the resulting vector after the normalization process is the

eigenvector that associated with the Perron root of A.

Examples of such multiplicative processes can be found in the applications of a finite

state Markov chains such as the branching processes [15], Markov rewards processes with

exponential utility [16], Leontiev Input/Output Economic model, and many other models.

Moreover, nonnegative matrices are also applied in other areas of science such as Statistical

Mechanics [11], Low-Dimensional Topology [28], Matrix Iterative Analysis [32],[5]. In the

Information Theory, the authors of [31] study the relationship between the Kullbac-Leibler

distance and the Perron root and use it to develop a power control algorithms to provide

desired quality of service.
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Since there is a wide range of applications of nonnegative irreducible matrices and the

size of the transition matrices are getting larger, speed and accuracy of the computation of

the Perron root is necessary. In this dissertation, we aim to construct an algorithm that is

capable of finding the Perron root of a large size nonnegative irreducible matrix accurately.
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Chapter 2

Background and Theory

In this chapter, we introduce the definitions that are related to a nonnegative irreducible

matrix. We also discuss background and certain related theories including previous work

done on computing the Perron root by other mathematicians.

2.1 Irreducible Nonnegative Matrices

We define an m × n matrix A = (aij) for 1 ≤ i ≤ m, and 1 ≤ j ≤ n. An m × n matrix

A is said to be nonnegative if for each aij ≥ 0. We write A ≥ 0. Consequently, for two

matrices, A ≥ B if aij ≥ bij for all i and j. A is said to be a positive matrix if aij > 0 for

all i and j. We denote P to be a square matrix of order n. P is called a permutation matrix

if P can be obtained from the identity matrix of order n or In by interchanging its rows or

columns.

Definition 2.1 [23] A square matrix An×n is said to be reducible if there exist a permutation

matrix P such that

P T AP =

(

X Y

0 Z

)

,
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where X and Z are both square; otherwise, A is said to be an irreducible matrix. The quantity

P TAP is called a symmetric permutation of A.

Definition 2.2 For a square matrix A, the quantity

ρ(A) = max
λ∈σ(A)

|λ|

is called the spectral radius of A, where σ(A) is a set of all eigenvalues of A .

The investigation of the properties of positive matrices has been successfully carried out

by Oscar Perron in 1907. For a positive matrix A, the spectral radius ρ(A) is a simple

eigenvalue to a positive eigenvector, and ρ(A) > λ for all other λ’ s in σ(A). Later in 1912,

Frobenius gave the extension of Perron’s results to irreducible nonnegative matrices.

Theorem 2.1 (Perron-Frobenius Theorem) If A is a nonnegative irreducible square

matrix of order n, then each of the following statements is true.

• ρ(A) ∈ σ(A) and ρ(A) > 0.

• ρ(A) is a simple eigenvalue.

• There exists an eigenvector x > 0 such that Ax = ρ(A)x.

• The unique vector defined by Ap = ρ(A)p, p > 0, and ||p||1 = 1, is called the Perron

vector. There are no nonnegative eigenvectors for A except for the positive multiples

of p, regardless of the eigenvalue.

The proof of the Perron-Frobenius theorem can be found in [23].
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2.2 Diagonal Transformation

A diagonal transformation is a method uses the fact that a nonnegative irreducible matrix

has a real simple eigenvalue equal to its spectral radius. Let A be a nonnegative irreducible

matrix, ρ(A) be the spectral radius of A and p be an eigenvector associated with ρ(A).

Suppose D is a diagonal matrix whose diagonal elements are components of p, and we define

e = (1, 1, . . . , 1)T . Then

D−1ADe = D−1Ap = D−1ρ(A)p = ρ(A)D−1p = ρ(A)e. (2.1)

This implies Be = ρ(A)e and B = D−1AD, where its row sums equal to ρ. However, in

many applications, an eigenvector p is unknown; thus, in order to use the fact in equation

(2.1), we need a way to form a diagonal matrix D. The following methods show how to form

D and use the diagonal transformation to compute the Perron root of A.

2.2.1 Brauer’s Algorithm

Brauer [6] proved that for every positive number η, there exists a matrix F (η) similar

to A in which the difference between the maximum row sums R∗ of F (η) and the minimum

row sums r∗ satisfies

R∗ − r∗ < η.

The algorithm was derived from his previous algorithm used to compute the maximum

eigenvalue of positive matrices. Suppose R and r are the maximum row sums and the

minimum row sums of A respectively. If R = r then, by the Collatz’s formula [26], the

spectral radius of A equals R. So, we let R > r. The algorithm begins by dividing the

interval [r, R] into four subintervals I1, I2, I3, and I4 of equal width, so the width of each of
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the four subintervals is

d =
R − r

4
.

For each subinterval,

I1 = {r ≤ x ≤ r + d},

I2 = {r + d < x ≤ r + 2d},

I3 = {r + 2d < x ≤ r + 3d}, and

I4 = {r + 3d < x ≤ r + 4d}.

Then let g = r+3d
r+2d

. If some of the row sums of A lie in the interval I1 or I2, then we multiply

the elements of the corresponding rows by g and divide the elements of the corresponding

columns by g. It is an analog of similarity transformation which transforms A to a similar

matrix, B. Therefore, the Perron root of A and B are equal.

After applying one iteration of the transformation, the values of row sums of the matrix

B that fall in the interval I1 or I2 are either remain unchanged from the values of the row

sums of A or increased at least by m(g − 1), where m is the smallest positive off-diagonal

entry of A. If they are increased, they cannot grow big enough to be in the interval I4.

Meanwhile, the values of the row sums of B that fall in the interval I3 or I4 are either remain

unchanged or decreased by at least m(1 − g−1). If they are decreased, they cannot be small

enough to be in the interval I1. Hence, if there are no row sums of B that lie in I1, then the

difference between two row sums is less than or equal to 3d.

Nevertheless, if there are some values of the row sums of B that lie in the interval I1,

we reapply the transformation on B using the original values R, r and g to obtain a similar

matrix B1. We continue the process until the values of the row sums of the resulting matrix

are no longer in I1. Let R′ and r′ be the maximum and the minimum row sums of the

resulting matrix in the last iteration. The difference between the maximum row sums R′
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and the minimum row sums r′ is

R′ − r′ ≤ 3

4
(R − r) = 3d.

After that, we divide the interval [r′, R′] into four strips of equal width, so the width of

each strip is

d′ =
R′ − r′

4
.

We repeat the same process to obtain a matrix that is similar to A, and the difference

between its maximum row sums R′′ and minimum row sums r′′ is

R′′ − r′′ ≤ 3

4
(4d′) ≤ (

3

4
)24d.

After k iterations, we have a matrix that is similar to A, and the difference between its

maximum row sums and minimum row sums is

R(k) − r(k) ≤ (
3

4
)k4d.

Hence, for every positive number η, it is possible to choose a number k large enough so that

R(k) − r(k) < η [6].

This algorithm works well in theory. In practice, it converges slowly; particularly, when

the difference between the maximum row sums and the minimum row sums of the resulting

matrix approaches 0. In addition, there are a lot of computational work per iteration.

2.2.2 Hall and Porsching’s Algorithm

In September of 1968, Hall and Porsching [13] came up with an algorithm for computing

the Perron root. This algorithm is based on their previous work in which they used to com-
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pute the Perron root and the Perron vector of positive matrices. They construct a sequence

of diagonal similarity transformations which transforms a given nonnegative irreducible ma-

trix to a sequence of matrices whose row sums converge to the maximum eigenvalue [13, 14].

They also show in [13] that the rate of convergence of their algorithm does not depend on

the ratio of the second largest and the largest eigenvalue.

Let Ak be the kth matrix in the sequence of matrices; we denote the maximum row sums

of Ak by Rk = maxi R
k
i and the minimum row sums of Ak by rk = mini R

k
i , where Rk

i is the ith

row sums of Ak. Suppose Jk = {i | Rk
i = rk} be an index set and we define bk

i =
∑

j∈Jk
(aij)

k

for all 1 ≤ i ≤ n. Let Tk be a diagonal matrix of order n such that

Tk = diag(dk
1, · · · , dk

n),

where

dk
i =

{

1 if i /∈ Jk,

xk if i ∈ Jk.

Notice that {xn} is a random sequence of positive numbers. By [13], the matrix

Ak+1 = T−1
k AkTk (2.2)

has row sums Rk+1
i = Ri + bk

i (xk − 1) if i /∈ Jn; otherwise, Rk+1
i = bk

i + (Rk
i − bk

i )/xk.

Instead of using a random sequence of positive numbers xk, the authors of [13] suggest a

way to obtain xk by using elements from a given nonnegative irreducible matrix A. Suppose

ν and µ are numbers such that

ν ∈ Jk, bk
ν = min

i∈Jk

bk
i and Rn

µ = Rk,
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and let a = 4bk
µ, b = 2Rk − 6bk

µ − 2bk
ν , c = Rk + rk − 2bk

µ − 2bk
ν , then

xk =







−b+(b2−4ac)1/2

2a
if a 6= 0

b/c if a = 0.

Using xk to form the matrix Tk and iterating equation (2.2) until Rk+1 − rk+1 < tol, we

have ρ(A) = Rn+1+rn+1

2
. The complete proof of convergence for this algorithm is shown in

[13], and 2n iterations of this algorithm are approximately equivalent to 3 iterations of the

power method. Observe that the algorithm takes 40 iterations to calculate the Perron root

of a given matrix A below with an error of 0.000009 [13].

A =















1 0 0 1

2 1 0 0

0 2 1 0

0 0 2 1















. (2.3)

2.2.3 Markham’s Algorithm

In October of 1968, Markham developed a practical method in [21] for computing the

Perron root of a positive matrix by transforming a positive matrix An×n to a positive gener-

alized stochastic matrix Sn×n. A matrix Sn×n is said to be a positive generalized stochastic

matrix if S is a positive matrix in which each row sum of S is equal to its spectral radius,

ρ(S).

Suppose A is a positive matrix of order n. Let Ri denotes the ith row sum of A, R

= maxi{Ri} and r = mini{Ri}. Suppose Q = diag(R1, R2, . . . , Rn) then, by a similarity

transformation, we obtain a new positive matrix B1 = Q−1AQ, where each row sum of B1

lies in the interval (r, R) [21, theorem 1]. Apply the similarity transformation to B1 to obtain

B2. The difference between the maximum and the minimum row sums of B2 is smaller than

one in B1. By continuing the iterative process, we obtain a finite sequence of matrices, B1,
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B2, · · ·, Bn, . . . , in which the difference between the maximum and minimum row sums of

each Bi is decreasing.

In addition, the sequence of matrices Bi converges to a positive generalized stochastic

matrix S [21, theorem 2]. Since S is a positive generalized stochastic matrix that is similar

to a positive matrix A, by the Frobenius theorem in section (3.1), we obtain the Perron root

of S, which is also the Perron root of A. Nevertheless, this algorithm has two disadvantages.

It only works for positive matrices, and it requires a large amount of computations. The

author of [7] shows that this algorithm is equivalent to the power method. Therefore, if a

given positive matrix A has a tight gap between the first and the second largest eigenvalues,

Markham’s algorithm converges very slowly.

2.2.4 Pham’s Algorithm

Pham[2] proved that any positive matrix is similar to a quasi stochastic matrix; the proof

can be found in [2]. Given below is a definition of a quasi stochastic matrix.

Definition 2.3 [2] A matrix A is said to be a quasi stochastic matrix if A is nonnegative

and s1 = s2 = . . . = sn = µ, where

si =

n
∑

j=1

aij , 1 ≤ i ≤ n

and µ is a characteristic number of the matrix A.

In fact, the characteristic number µ is the spectral radius of A [2]. Moreover, a vector e =

[1, 1, . . . , 1]T is an eigenvector corresponding to µ. In 1975, Pham proved that a nonnegative

irreducible matrix can be transformed to a quasi stochastic matrix via similarity variation

algorithm [3]. By applying the algorithm, we can find the maximum eigenvalue and the

corresponding eigenvector of a nonnegative irreducible matrix.
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Below is Pham’s similarity variation algorithm for computing the Perron root µ and the

Perron vector p of a nonnegative irreducible matrix A.

1. Let A = A0 be a nonnegative matrix, from A0 construct a sequence of matrices {Ak}∞k=0

as follows,

2. Ak+1 = S−1
k AkSk where Ak is a nonnegative matrix,

3. Sk = diag(s
(k)
1 , . . . , s

(k)
n ), and si =

∑n
j=1 aij, i = 1, 2, . . . , n ,

4. form Qk+1 = T0T1 . . . Tk where Tk = Sk/s
(k)
r , and r is an arbitrary integer from 1 to n,

5. set mk = min{s(k)
1 , . . . , s

(k)
n } and Mk = max{s(k)

1 , . . . , s
(k)
n }.

Via the above algorithm, Pham proved in [3] that the sequences {Ak}∞k=0, {mk}∞k=0,

{Mk}∞k=0 and {Qk}∞k=0 are convergent, and they hold the following properties:

Property 1. limk→∞ Ak = Ā is a quasi stochastic matrix.

Property 2. limk→∞ Mk = limk→∞ mk = µ > 0.

Property 3. limk→∞ Qk = Q = diag(q1, . . . , qn) ∀qi > 0.

Property 4. Ā = Q−1AQ.

Property 5. The quantity µ is the maximum eigenvalue, and a vector q = (q1, . . . , qn)T is

the corresponding eigenvector, of the matrix A.

Many numerical results from the algorithm can be found in [3]. Both Pham’s algorithm

and Markham’s algorithm are equivalent [7]. In fact, they are equivalent to the power method

of Von Mises [33]; it is known that the power method converges for primitive matrices with

an arbitrary starting vector x 6= 0 [7, 33]. Since positive matrices and strictly irreducible

matrices (i.e., all of diagonal entries are positive) are primitive, the algorithm converges.

Nevertheless, they converge slowly if the magnitude of the subdominant eigenvalue is close

to the Perron root of A.
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2.2.5 Duan and Zhang’s Algorithm

In 2006, Duan and Zhang [9] produced the algorithm that used the idea of a similarity

transformation. Suppose D0 = diag(a0
1, a

0
2, . . . , a

0
n), where each a0

i =
∑n

j=1 a0
ij is the row

sums of A. Let Ak+1 = D−1
k AkDk. Since A can be written as A = λI + B, the Perron root

of B is ρ(B) = ρ(A) − λ, where I is the identity matrix of order n, B is a nonnegative

irreducible matrix and λ is any positive number [9].

The following is the steps of the algorithm:

Step 0: Given an n × n nonnegative irreducible matrix A = aij . Let ǫ > 0 and let k = 0.

Step 1: Let B = B0 = I + A = b0
ij .

Step 2: Compute

bk
i =

n
∑

j=1

bk
ij , rk = min

1≤i≤n
bk
i , Rk = max

1≤i≤n
bk
i .

If (Rk − rk) < ǫ, go to step 5.

Step 3: Compute Dk =diag(bk
1, b

k
2, · · · , bk

n).

Step 4: Update. Let Bk+1 = D−1
k BkDk.

Set k = k + 1. Go back to step 2.

Step 5: Let ρ = 1/2(rk + Rk) − 1. Stop.

The algorithm is feasible for any nonnegative irreducible matrix. Observe that the al-

gorithm are similar to Markham’s algorithm and Pham’s algorithm. Thus, the algorithm

always converges because the first step guarantees the primitivity. The slow rate of con-

vergence occurs if the magnitude of the subdominant eigenvalue and the Perron root of A

are close. Overall, this algorithm is the most powerful one that uses the idea of a diagonal

similarity transformation.

In conclusion, all of the diagonal transformation methods mentioned in this section have

one disadvantage in common. They consume time and use large amount of computation and

organization. Next, we study a new approach for computing the Perron root. The approach
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is based on the Perron complementation technique.

2.3 Perron Complementation and Generalized Perron

Complementation

In this section, we introduce the concept of Perron complementation. Carl Meyer first in-

troduced the concept of Perron complementation [22, 1989] which concerns the computation

of the unique normalized Perron vector π of a large scale problem. The idea is to partition

a nonnegative irreducible matrix A into two or more smaller matrices – say P1, P2, . . . , Pk

of order r1, r2, . . . , rk, where
∑k

i=1 ri = n. In order to obtain the Perron vector π of A, the

Perron vector π(i) of each Pi must be computed separately and π = (π(1), π(2), . . . , π(k)).

Let An×n be a nonnegative irreducible matrix with the spectral radius of A, ρ(A), and its

associated positive eigenvector π. Suppose α and β are disjoint nonempty ordered subsets

of 〈n〉 = {1, 2, · · · , n} such that α∪ β = 〈n〉. Assuming, the elements of each ordered set are

arranged in an increasing order. Let |α| denotes the cardinality of α, and A[α, β] denotes

submatrix of A whose rows and columns are determined by α and β respectively. We denote

A[α, α], the principal submatrix of A based on α, as A[α]. Using above notations, the Perron

complement can now be defined as follows:

Definition 2.4 Let A be an n×n nonnegative irreducible matrix with spectral radius ρ. For

a certain α, the Perron complement of A[β] in A is defined to be the matrix

P (A/A[β]) = A[α] + A[α, β](ρI − A[β])−1A[β, α]. (2.4)

In addition, the following lemma related to the spectral radius of each Peron complementa-

tion. The complete proof can be found in [22].
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Lemma 2.1 If A is a nonnegative irreducible matrix with the spectral radius ρ(A), then

each Perron complement P (A/A[β]) is also a nonnegative irreducible matrix with the same

spectral radius ρ(A).

In general, we do not know the value of ρ(A) by looking at the matrix A. Lu, the author

of [18] investigated the property of the Perron complement and combined the result from

lemma 2.1 with the idea of the generalized Perron complement to approximate ρ(A). The

concept of the generalized Perron complement was introduced by Neumann [24].

Definition 2.5 Let A be an n × n nonnegative irreducible matrix, the generalized Perron

complement of A[β] in A is defined to be the matrix

Pt(A/A[β]) = A[α] + A[α, β](tI − A[β])−1A[β, α], t > ρ(A[β]). (2.5)

One of the most important properties of the generalized Perron complement is that, for

any t > ρ(A[β]), the quantity Pt(A/A[β]) is a nonnegative irreducible matrix [24]. The

following lemma is in [18].

Lemma 2.2 If A is a nonnegative irreducible matrix, then the Perron root ρ(Pt(A/A[β]))

of the generalized Perron complement is a strictly decreasing function of t on (ρ(A[β]),∞).

2.3.1 Lu’s Algorithm

In 2002, Lu [18] combined the idea of generalized Perron complementation and Newton

iteration. The resulting algorithm is an alternative way of producing the Perron root of a

nonnegative irreducible matrix A.

14



Lemma 2.3 [Theorem 4] If A is a nonnegative irreducible matrix, then

ρ(Pt(A/A[β]))



















< ρ(A) if t > ρ(A)

= ρ(A) if t = ρ(A)

> ρ(A) if ρ(A[β]) < t < ρ(A).

(2.6)

The generalized Perron complementation is applied to a given matrix A to obtain a good

estimation of the upper bound and the lower bound of the Perron root of A. In order for

Pt(A/A[β]) to be well defined, the value of t must be greater than ρ(A[β]) [24]; as a result,

t is set to be the maximum row sums of A[β]. Using lemma 2.3, a good approximation of

the Perron root can be determined, and the exact value of the Perron root can be obtained

if the right t is chosen. In practice, it is difficult to determine the value of t that equals the

Perron root of A. In stead of directly solving for the Perron root of A, Lu took the problem

and considered it in another direction.

Let

f(t) = ρ(Pt(A/A[β])) = ass + A[s, β](tI − A[β])−1A[β, s], (2.7)

where β = 〈n〉 \{s} in which {s} = {j | rj = minimum row sum of A}. By lemma 2.3, f(t)

is a strictly decreasing continuous function of t on the interval (ρ(A[β]),∞). A new function

g(t) = f(t) − t is formed, and it has a unique root on the interval (b, c) if ρ(A[β]) < b <

ρ(A) < c [18, theorem 6 ]. From this set up, the root of g(t) is equivalent to the Perron root

of A. The following is Lu’s algorithm.

Step 1: Calculate the row sums rj(A) of A and set c = rmax(A).

Step 2: Determine β and α according to rj and compute Pc(A/A[β]), then set b =

rminPc(A/A[β]) if it is bigger than rmin(A).

Step 3: Determine the g(t).

15



Step 4: If g((b + c)/2) > 0 go to next step. Else start to choose the lower bound b such

that g(b) > 0.

Step 5: Use the bisection method to reduce the length of (b, c).

Step 6: Apply Newton iteration to g(t) on (b, c) to compute ρ(A).

Although the algorithm produces the Perron root, two practical problems occur. It is hard

to choose β and t properly. Secondly, the value of Pc(A/A[β]) must be computed for each

iteration of the generalized Perron complement. Furthermore, Newton iterations converge

quadratically, but g(t) is a function of matrices and g′(t) = 1 + A[s, β](tI − A[β])−2A[β, s]

must be computed in every Newton iteration. Therefore, it is expensive to compute the

factor (tI − A[β])−2. Despite the fact that a way to compute tk+1 is suggested in [18], the

algorithm is certainly too expensive to compute the Perron root of A.

In addition, Shimming Yang and Ting-Zhu Huang computed the bounds of Perron root

of a nonnegative irreducible matrix A using the idea of the Perron complementation.

2.3.2 Yang and Huang’s Algorithm

Suppose A be a nonnegative irreducible matrix of order n, and ρ(A) is a spectral radius

of A. Let R(A) denotes a maximum row sums of A, and r(A) denotes a minimum row sums

of A. Using the same notations as previously used in section 2.3.1, the following lemmas are

mentioned and proved in [34] :

Lemma 2.4 If kth row has the minimum row sum in A and let β = {k}, then the maximum

row sum of A[β]’s Perron complement is less than or equal to the maximum row sum of A.

That is the inequality

ρ(A) = ρ(P (A/A[β])) ≤ R(P (A/A[β])) ≤ R(A) (2.8)

holds.
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As a result, a new upper bound of A can be obtained from the maximum row sums of

P (A/A[β]). The algorithm for finding a new upper bound of the Perron root of A is as

follows:

Step 1: Calculate all the row sums ri(A) and set r(A) = mini(ri(A)). Let γ = {l | rl =

r(A)}, l ∈< n >; set d = ∞.

Step 2: Get one of the element from γ and assign its value to k. Then delete this element

from γ. Update β = {k}, α = 〈n〉\β.

Step 3: Let bi = akk + ri − aik, ci = riakk − aikr(A). Set

d = min{max
i∈β

bi +
√

b2
i − 4ci

2
, d}.

Step 4: If γ is not empty, go to step 2; otherwise, the new upper bound is d.

Lemma 2.5 If Kth row has the maximum row sum in A, let β = {K}, then the minimum

row sum of A[β]’ Perron complement is greater than or equal to the minimum row sum of

A. That is the inequality

r(A) = r(P (A/A[β])) ≤ ρ(P (A/A[β])) ≤ ρ(A) (2.9)

holds.

The following is an algorithm that produces a new lower bound of the Perron root of A.

Step 1: Calculate all the row sums ri(A) and set R(A) = maxi(ri(A)). Let γ = {l|rl =

R(A)}, l ∈< n >; set d = 0;

Step 2: Get one of the element from γ and assign its value to K. Then delete this element

from γ. Update β = {K}, α =< n > \β;

17



Step 3: Let bi = aKK + ri − aiK , ci = riaKK − aiKR(A). Set

d = max{min
i∈β

bi +
√

b2
i − 4ci

2
, d};

Step 4: If γ is not empty, go to step 2; otherwise, the new lower bound is d.

Several examples that demonstrate how both algorithms work can be found in [34].

2.4 Iterative Method

During 1960’s, while the idea of using the diagonal similarity transformation to find the

Perron root of a nonnegative irreducible matrix A was well known, another idea emerged.

Power method and inverse iteration are some of the simplest iterative methods that are used

to find the largest eigenvalue of any matrix. Since the Perron root is the largest eigenvalue

of a nonnegative irreducible matrix, the main ingredient for some of the iterative algorithms

that we consider in this dissertation is a power method or an inverse iteration algorithm.

The first iterative method was introduced by a Japanese scientist named Takashi Noda. His

algorithm is based on an inverse iteration algorithm.

2.4.1 Noda’s Algorithm

In 1971, Noda [25] introduced the algorithm that implemented the ideas of the Wielandt’s

method [27] and an inverse iteration method. Even though the Wielandt’s method is applied

to general matrices, the complete proof of the convergence of the method applied to a

nonnegative irreducible matrix A can be found in [25]. Suppose λ is an approximation of

the Perron root of A and assume that λ > ρ(A). When applying an inverse iteration to

the iterate matrix (λI − A)−1, the Perron root estimator λ converges to ρ(A). Moreover,

for an arbitrary positive vector x, the normalized vector x converges to a unique normalized
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eigenvector associated with ρ(A).

The following is Noda’s algorithm that used for computing the Perron root of a nonneg-

ative irreducible matrix A.

Let λ0 be a positive number that is greater than ρ(A), and x0 and v be positive vectors.

Set tol = 1e−16

For n = 0, 1, 2 . . .

x∗(n+1) = (λ̄(n)I − A)−1x(n),

τ (n+1) = < x∗(n+1), v > / < x(n), v >,

x(n+1) = x∗(n+1)/τ (n+1),

τ̄ (n+1) = max
k

((x∗(n+1))k/(x(n))k),

λ̄(n+1) = λ̄(n) − (1/τ̄ (n+1)),

λ(n+1) = λ̄(n) − (1/τ (n+1)),

τ (n+1) = min
k

((x∗(n+1))k/(x(n))k),

λ(n+1) = λ̄(n) − (1/τ (n+1))

until λ̄(n) − λ(n) < tol, then the Perron root ρ(A) is λ(n).

Since the Perron root estimator λ is greater than the Perron root of A, the iterate matrix

(λI − A)−1 is always positive by theorem 3.9 in [32]. Apply the iterate matrix (λI − A)−1

to an arbitrary positive vector x, the vector x∗(n+1) = (λI − A)−1x(n) is always positive.

Observe that for each iteration,

λ(n+1) ≤ λ(n+1) ≤ λ̄(n+1).
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and

lim
n→∞

λ̄n = lim
n→∞

λn = lim
n→∞

λn = ρ(A) and λ̄0 > λ̄1 > · · · > λ̄n > λ̄n+1 > · · · > ρ(A).

The numerical results of the this algorithm when applied to nonnegative irreducible

matrices are presented in section 3.5. Up to this point, this algorithm use the least amount

of time to compute the Perron root, and Elsner proved in 1976 that this algorithm converges

to the Perron root quadratically [10].

2.4.2 Elsner’s Algorithm

Elsner [10] used the idea of inverse iteration to calculate the Perron root of a nonnegative

irreducible matrix A. The algorithm converges at the rate of at least quadratic. The proof

of convergence using Hopf’s inequality can be found in [10]. Suppose B is a nonnegative

matrix of order n, and x, y be a pair of vectors such that y > 0. We define

max(
x

y
) = max

i
(
xi

yi
),

min(
x

y
) = min

i
(
xi

yi
),

and

osc(
x

y
) = max(

x

y
) − min(

x

y
).

Theorem 2.2 [The Hopf’s inequality] Let B > 0 be a positive matrix of order n. Then for

any vector x and any positive vector y,

osc(
Bx

By
) ≤

√
K − 1√
K + 1

osc(
x

y
)
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where

K = sup
u≥0
v≥0

{

max(
Au

Av
) max(

Av

Au
)

}

≤ m2

M2

and

M = max
i,j

bij , m = min
ij

bij .

The proof of this theorem 2.2 can be found in [20].

The following is Elsner’s algorithm for computing the Perron root of a nonnegative irre-

ducible matrix A.

Step 1: For a pair of vectors x, y with y > 0 defines

||x|| = max(
x

y
).

Step 2: Let {Bn} be a sequence of positive matrices commuting with A where n =

0, 1, 2, . . . .

Step 3: Assume that there exists a number γ such that

N(Bn) ≤ γ < 1, with n = 0, 1, 2, . . .

where N(Bn) =

√
K(Bn)−1√
K(Bn)+1

.

Step 4: For given x0 > 0, define iteratively

x̃n+1 = Bnxn,

xn+1 =
x̃n+1

||x̃n+1||
,

λ̄n+1 = max(
Axn+1

xn+1

), λn+1 = min(
Axn+1

xn+1

)

where λ̄0 and λ0 are defined analogously.
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From the above iterative procedure, the sequences of λ̄n and λn converge to the Perron

root ρ(A) [10], where

λn ≤ λn+1 ≤ ρ(A) ≤ λ̄n+1 ≤ λ̄n. (2.10)

2.4.3 Modified Elsner’s Algorithm

Concerning the stability of Elsner’s algorithm, the modified Elsner’s algorithm [17] was

formulated by L. Elsner, I. Koltracht, M. Neumann, and D. Xiao. The new algorithm is

based on a special inverse iteration that was first proposed by Noda with a new stopping

criteria. In fact, the idea of Elsner’s procedure, which shown to converge to the Perron root

quadratically, is implemented. The following is a stable algorithm for computing the Perron

root of a nonnegative irreducible matrix:

1. Let u be the machine precision. Let y0 be a positive vector in Rn and µ0 = max(Ay0/y0).

For s = 0, 1, . . . .

2. Compute the LU factorization

(µsI − A) = LsUs,

and solve for xs in

LsUsxs = ys

by the Ahac, Bouni, and Olesky algorithm [1]; save the LU factors.

3. Compute r = Axs − ys.

4. Solve Ad = r using Ls and Us.
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5. Update x̄s = xs − d; and compute

ys+1 =
x̄s

||x̄s||∞
and µs+1 = max(

Ays+1

ys+1
).

6. Proceed until

||x̄s||−1 ≤ u1/2and osc(
ys

ys+1
) ≤ u1/2.

Note that the LU factorization used in step 2 can always find pivot elements when solving

for xs in the linear system

(µsI − A)xs = ys.

However, the floating-point operation counts of this LU factorization are approximately n2/2

more than operation counts of Gaussian elimination with either partial or no pivoting [1].

An iterative refinement is added due to the suggestion of Skeel [30] in step 3 to obtain a

more accurate Perron root.
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Chapter 3

Our Contribution

In this chapter, we present the main concept of our algorithm. The basis of this algorithm

is combining the Collatz’s formula and an inverse iteration algorithm. We shall discuss the

formulation of this algorithm and introduce test matrices which are used to test for accuracy

and convergence of our algorithm. The results for computing the Perron root using test

matrices will be given later in this chapter. The proof of convergence will be given to

establish the accuracy of the algorithm. After that, we will compare our results from this

algorithm to some well known algorithms mentioned in Chapter 2.

3.1 Collatz’s Formula

Lother Collatz, a German mathematician, discovered the formula for the Perron root

of positive matrices in 1942. This formula was refined by Wielandt in 1950 to develop the

Perron-Frobenius theory. The following is the Collatz-Wielandt formula for the Perron

root of a positive matrix.

24



The Perron root of An×n > 0 is given by

ρ(A) = max
x∈N

f(x),

where f(x) = min1≤i≤n
(Ax)i

xi
and N = {x|x ≥ 0 with x 6= 0} [23].

Throughout this chapter, we define A = (aij) to be an n × n nonnegative irreducible

matrix, and let x = (x1, x2, . . . , xn)T be any positive vector. In addition, we define a function

fi(x) = (Ax)i/xi, where 1 ≤ i ≤ n. Let m(x) = mini fi(x), and M(x) = maxi fi(x). The

following is the Collatz and Wielandt’s theorem.

Theorem 3.1 The spectral radius ρ(A) of a nonnegative irreducible matrix satisfies either

m(x) < ρ(A) < M(x) (3.1)

or

m(x) = ρ(A) = M(x) (3.2)

for any x > 0. If an equation (3.2) holds, then x is a positive eigenvector of A corresponding

to ρ(A).

Theorem 3.1 can be used to estimate the upper and lower bounds of the spectral radius

ρ(A) — see [6],[10],[13],[17], and [25]. Because of our objective is to formulate a fast algorithm

for computing the Perron root, we employ the Collatz-Wielandt’s theorem as our primary

tool in our algorithm.
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3.2 Stopping Criteria

Since our algorithm is involved finding a solution of a linear system whose coefficient

matrix is a nonsingular M−matrix, the algorithm must be subjected to a certain stopping

criteria. By the result of the Perron-Frobenius theorem, we know that the Perron root of

a nonnegative irreducible matrix is a simple eigenvalue. Due to the perturbation results

(for a sufficiently small δ, A+ δE, ‖E‖2 = 1), the sensitivity of a simple eigenvalue depends

on the angle between normalized left and right eigenvectors corresponding to the eigenvalue

[17], [33], [8, Theorem 4.4 p.149].

However, the authors of [17] give the new result on a componentwise condition number of

a simple eigenvalue of a nonnegative irreducible matrix A. It does not depend on the angle

between normalized left and right eigenvectors.

Theorem 3.2 For an n × n nonnegative and irreducible matrix A, and E is an n × n real

matrix such that

|E| ≤ ǫA,

where ǫ ≤ 1. Let ρ(A) be the Perron root of A and λ be the Perron root of A + E. Then

|λ − ρ(A)|
ρ(A)

≤ ǫ.

Therefore, we apply this result to our algorithm and use it as a stopping criteria.

3.3 Our Algorithm

Let A be a nonnegative irreducible matrix, p be the Perron vector of A, and ρ(A) be

the Perron root of A. Given below is our algorithm for computing the Perron root of a

nonnegative irreducible matrix.
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Algorithm. Let tol be the machine precision. Let x(0) be a positive vector, and set

λ(0) = maxi(
∑n

j=1 aij), and B(0) = (λ(0)I − A)−1.

For i = 0, 1, 2, . . . .

1. Compute the LU factorization of

(λ(i)I − A) = L(i)U (i),

and solve for x̃(i)

L(i)U (i)x̃(i) = x(i)

2. Use the same LU factors solve for x(i+1)

L(i)U (i)x(i+1) = x̃(i).

3. Compute

λ̄(i) = λ(i) − min
j

(
x̃

(i)
j

(B(i)x̃(i))j
)

and

λ(i) = λ(i) − max
j

(
x̃

(i)
j

(B(i)x̃(i))j
)

where 1 ≤ j ≤ n; Note that the quantity (B(i)x̃(i))j is x
(i+1)
j .

4. Set

λ(i+1) = λ̄(i).

5. Compute

error(i) = (λ̄(i) − λ(i))/λ̄(i).

6. If error > tol go back to step 1; otherwise, the Perron root of A is λ(i+1).
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The following theorem characterizes the behavior of the algorithm including its convergence.

Theorem 3.3 Let A be a nonnegative irreducible matrix and let x(0) be a positive vector

such that

x(0) =





























x
(0)
1

x
(0)
2

...

x
(0)
j

...

x
(0)
n





























.

Let λ(0) = maxi(
∑n

j=1 (aij)) and let B(0) = (λ(0)I − A)−1. Set

λ̄(0) = λ(0) − min
j

(

x̃
(0)
j

(B(0)x̃(0)) j

)

and

λ(0) = λ(0) − max
j

(

x̃
(0)
j

(B(0)x̃(0)) j

)

.

Let x̃(0) = B(0)x(0), and x(1) = B(0)x̃(0) set λ(1) = λ̄(0) and B(1) = (λ(1)I − A)−1. Set

λ̄(1) = λ(1) − min
j

(

x̃
(1)
j

(B(1)x̃(1)) j

)

and

λ(1) = λ(1) − max
j

(

x̃
(1)
j

(B(1)x̃(1)) j

)

.

For i = 2, 3, . . . . Let x̃(i−1) = B(i−1)x(i−1), and x(i) = B(i−1)x̃(i−1), Let λ(i) = λ̄(i−1) and
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B(i) = (λ(i)I − A)−1. Set

λ̄(i) = λ(i) − min
j

(

x̃
(i)
j

(B(i)x̃(i)) j

)

and

λ(i) = λ(i) − max
j

(

x̃
(i)
j

(B(i)x̃(i)) j

)

,

then

1. For any fixed i, λ(i) ≤ ρ(A) ≤ λ̄(i).

2. λ̄(0) > λ̄(1) > . . . > λ̄(i) > . . . ≥ ρ(A).

3. limi→∞ λ̄(i) = ρ(A).

4. limi→∞ λ(i) = ρ(A).

We will examine the proof of each part separately.

Part 1

Proof

Since we define B(i) = (λ(i)I − A)−1, we are able to obtain that

ρ(B(i)) =
1

λ(i) − ρ(A)
.

Now consider the Collatz’s formula in equation (3.1), for any i = 0,1,2 . . . ,

min
j

(
(B(i)x̃(i))j

x̃
(i)
j

) ≤ ρ(B(i)) ≤ max
j

(
(B(i)x̃(i))j

x̃
(i)
j

). (3.3)

By lemma 3.11 part (vii) in [29], the equation (3.3) becomes

max
j

(
x̃

(i)
j

(B(i)x̃(i))j

) ≥ 1/ρ(B(i)) ≥ min
j

(
x̃

(i)
j

(B(i)x̃(i))j

)
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= max
j

(
x̃

(i)
j

(B(i)x̃(i))j
) ≥ λ(i) − ρ(A) ≥ min

j
(

x̃
(i)
j

(B(i)x̃(i))j
)

⇒ −max
j

(
x̃

(i)
j

(B(i)x̃(i))j
) ≤ ρ(A) − λ(i) ≤ −min

j
(

x̃
(i)
j

(B(i)x̃(i))j
)

⇒ λ(i) − max
j

(
x̃

(i)
j

(B(i)x̃(i))j
) ≤ ρ(A) ≤ λ(i) − min

j
(

x̃
(i)
j

(B(i)x̃(i))j
).

Hence, for each i, λ(i) ≤ ρ(A) ≤ λ̄(i).

�

Part 2

Proof

By theorem 3.9 in [32], we obtain that for any fixed i ≥ 0, if λ(i) > ρ(A), then

(λ(i)I−A)−1 > 0. With the result from part 1 and the facts that λ(0) = maxi(
∑n

j=1 aij)

and x̃(0) > 0, we then have

λ̄(0) = λ(0) − min
j

(
x̃

(0)
j

(B(0)x̃(0))j
) ≥ ρ(A) > 0.

Hence, λ(0) > λ̄(0) ≥ ρ(A) > 0. Moreover, B(0) = (λ(0)I − A)−1 > 0 and x̃(0) > 0;

thereby, x̃(1) = B(0)B(0)x̃(0) > 0, which guarantees that the quantity minj(
x̃
(1)
j

(B(1)x̃(1))j
) >

0.

Next consider λ̄(1), because

λ̄(1) = λ(1) − min
j

(
x̃

(1)
j

(B(1)x̃(1))j
) = λ̄(0) − min

j
(

x̃
(1)
j

(B(1)x̃(1))j
) ≥ ρ(A) > 0,

it suffices to conclude that λ̄(0) > λ̄(1) ≥ ρ(A).

Recall that for any i = 2, 3, 4, . . ., λ̄(i) = λ̄(i−1)−minj(
x̃
(i)
j

(B(i) x̃(i))j
), and λ̄(i) ≥ ρ(A) for all

i. By [32, theorem 3.9], B(i) > 0 and x̃(i) > 0. Hence, the quantity minj(
x̃
(i)
j

(B(i)x̃(i))j
) > 0,
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and λ̄(i) > λ̄(i+1) ≥ ρ(A) for all i. It is enough to establish that

λ̄(0) > λ̄(1) > . . . > λ̄(i) > . . . ≥ ρ(A).

�

Before we can prove the results of part 3 and part 4, we gather elementary facts in the

following lemmas.

Lemma 3.1 Let A be a nonnegative irreducible matrix and ρ(A) be the Perron root of A. If

λ1 > λ2 > ρ(A), then (λ2I − A)−1 > (λ1I − A)−1 > 0.

Proof

By Neumann series, we obtain

(λ1I − A)−1 =
1

λ1

(

I − A

λ1

)−1

=
1

λ1

∞
∑

r=0

(

A

λ1

)r

=
1

λ1

(

I +
A

λ1
+

A2

λ1
2 + . . .

)

, and

(λ2I − A)−1 =
1

λ2

(

I − A

λ2

)−1

=
1

λ2

∞
∑

r=0

(

A

λ2

)r

=
1

λ2

(

I +
A

λ2
+

A2

λ2
2 + . . .

)

.

Observe that

(λ2I − A)−1 − (λ1I − A)−1 =

∞
∑

r=0

(

1

λ2
r+1 − 1

λ1
r+1

)

Ar.

Since λ1 > λ2 > ρ(A), we have
(

1
λ2

r+1 − 1
λ1

r+1

)

> 0 for all r ≥ 0.

Hence, (λ2I−A)−1−(λ1I−A)−1 = α0I+α1A+α2A
2+. . . , where αr =

(

1
λ2

r+1 − 1
λ1

r+1

)

.

Let B =
∑∞

k=0 αkA
k, where αk > 0. Since A is a nonnegative and irreducible matrix,

then for some particular i, j there exists a positive integer k such that ak
ij > 0, and k
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depends on i, j. Let k′ = max(k) such that ak
ij > 0; hence, the quantity α0I + α1A +

α2A
2 + . . . + αk′Ak′

> 0.

Since

(λ2I−A)−1−(λ1I−A)−1 =
∞
∑

r=0

(

1

λ2
r+1 − 1

λ1
r+1

)

Ar ≥ α0I+α1A+α2A
2+. . .+αk′Ak′

> 0,

we have

(λ2I − A)−1 > (λ1I − A)−1 > 0.

�

Lemma 3.2 Let x̃(0) be a positive vector and let λ(i) > λ(i+1) > ρ(A), where i = 0, 1, 2, . . . .

If B(i) = (λ(i)I − A)−1, then

max
j

(

x̃
(i)
j

(B(i)x̃(i))j

)

≥ max
j

(

x̃
(i+1)
j

(B(i+1)x̃(i+1))j

)

> 0

and

lim
i→∞

{

max
j

(

x̃
(i)
j

(B(i)x̃(i))j

)}

= 0,

where x̃(i+1) = B(i)B(i)x̃(i).

Proof

Note that both matrices B(i) and B(i+1) are positive and nonsingular because λ(i) >

λ(i+1) > ρ(A). For any fixed i, we set

m(i) = min
j

(

(B(i)x̃(i))j

x̃
(i)
j

)

.

So that

m(i) ≤
(

(B(i)x̃(i))j

x̃
(i)
j

)

for all j
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and

m(i)x̃
(i)
j ≤ (B(i)x̃(i))j for all j.

We then have that

m(i)x̃(i) ≤ B(i)x̃(i). (3.4)

Multiplying both sides of equation (3.4) by B(i), we obtain

m(i)B(i)x̃(i) ≤ B(i)B(i)x̃(i) (3.5)

and multiplying both sides of equation (3.5) by B(i), we have

m(i)B(i)B(i)x̃(i) ≤ B(i)B(i)B(i)x̃(i). (3.6)

Observe that B(i+1) > B(i) > 0 for all i by lemma 3.1, then equation (3.6) becomes

0 < m(i)B(i)B(i)x̃(i) ≤ B(i+1)B(i)B(i)x̃(i), (3.7)

then we have

0 < m(i)(B(i)B(i)x̃(i))j ≤ (B(i+1)B(i)B(i)x̃(i))j for all j. (3.8)
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Hence,

0 < m(i) ≤
(

B(i+1)B(i)B(i)x̃(i)
)

j

(B(i)B(i)x̃(i))j
=

(

B(i+1)x̃(i+1)
)

j

x̃
(i+1)
j

for all j. (3.9)

As a result,

0 < min
j

(

(B(i)x̃(i))j

x̃
(i)
j

)

≤ min
j

(

(B(i+1)x̃(i+1))j

x̃
(i+1)
j

)

. (3.10)

Then by lemma 3.11 part (vii) in [29], equation (3.10) becomes

0 < max
j

(

x̃
(i+1)
j

(B(i+1)x̃(i+1))j

)

≤ max
j

(

x̃
(i)
j

(B(i)x̃(i))j

)

. (3.11)

Next, as λ(i) → ρ(A), B(i) grows unbounded, which means that the sequence

{

min
j

(

(B(i)x̃(i))j

x̃
(i)
j

)}∞

i=0

is a real positive monotone increasing unbounded sequence. Therefore, by theorem

3.6.3 in [4] we have

lim
i→∞

{

min
j

(

(B(i)x̃(i))j

x̃
(i)
j

)}

= ∞.

Hence,

lim
i→∞

{

max
j

(

x̃
(i)
j

(B(i)x̃(i))j

)}

= lim
i→∞









1
{

minj

(

(B(i)x̃(i))j

x̃
(i)
j

)}









= 0.

The proof of lemma 3.2 is complete. �

We are now ready to prove part 3 and part 4 of theorem 3.3.
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Part 3.

Proof

From part 2, the sequence {λ̄(i)} is real positive monotone decreasing and bounded

below by ρ(A). By Bolzano-Weierstrass theorem, there exists a subsequence {λ̄(ik)} of

{λ̄(i)} such that limk→∞ λ̄(ik) = λ̄∗.

In addition, λ̄(i) = λ(i)−minj

(

x̃
(i)
j

(B(i)x̃(i))j

)

, we then have that the sequence {λ(i)} is real

positive monotone decreasing bounded below by ρ(A). Hence, by the standard result

of real analysis, we know that

lim
i→∞

λ(i) = λ∗ exists, and λ∗ ≥ ρ(A). (3.12)

Since λ(i) = λ(i) − maxj

(

x̃
(i)
j

(B(i) x̃(i))j

)

and ρ(A) ≥ λ(i) for all i ≥ 0, we have

ρ(A) − λ(i) = ρ(A) − λ(i) + max
j

(

x̃
(i)
j

(B(i)x̃(i))j

)

≥ 0.

So that

ρ(A) − λ(i) ≥ −max
j

(

x̃
(i)
j

(B(i)x̃(i))j

)

,

and

lim
i→∞

(ρ(A) − λ(i)) ≥ lim
i→∞

(

−max
j

(

x̃
(i)
j

(B(i)x̃(i))j

))

.

The right hand side becomes 0 by lemma 3.2, and we obtain

lim
i→∞

(ρ(A) − λ(i)) ≥ 0;
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consequently,

ρ(A) ≥ lim
i→∞

λ(i) = λ∗. (3.13)

Thereby, ρ(A) = λ∗ by equations (3.12) and (3.13) and limi→∞ λ(i) = ρ(A).

Next, by lemma 3.11 in [29],

max
j

(

x̃
(i)
j

(B(i)x̃(i))j

)

≥ min
j

(

x̃
(i)
j

(B(i)x̃(i))j

)

> 0 for all i and

lim
i→∞

(

max
j

(

x̃
(i)
j

(B(i)x̃(i))j

))

= 0,

we have

lim
i→∞

(

min
j

(

x̃
(i)
j

(B(i)x̃(i))j

))

= 0.

Hence, limi→∞ λ̄(i) = limi→∞

(

λ(i) − minj

(

x̃
(i)
j

(B(i)x̃(i))j

))

= limi→∞ λ(i) = ρ(A).

�

Part 4.

Proof

Recall that we define

λ(i) = λ(i) − max
j

(

x̃
(i)
j

(B(i)x̃(i))j

)

,

by lemma 3.2, we have

lim
i→∞

λ(i) = lim
i→∞

(

λ(i) − max
j

(

x̃
(i)
j

(B(i)x̃(i))j

))

= lim
i→∞

λ(i) = ρ(A).

�

36



3.4 Test Matrices

In this section, we present the results of using test matrices to test the convergence of

our algorithm.

The first test matrix that we use is the inverse of a tridiagonal M-matrix. This matrix

has a huge gap between its maximum row sums and its minimum row sums. Given below is

an inverse tridiagonal M-matrix of order n.

An =























1 1 1 · · · 1

1 2 2 · · · 2

1 2 3 · · · 3

...
...

. . . n − 1 n − 1

1 2 · · · n − 1 n























n×n

=























2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 1























−1

n×n

. (3.14)

One advantage of using An as a test matrix is that the largest eigenvalue can be deter-

mined explicitly by a formula referred in [19] as

ρ(An) = 1/(2 − 2 cos(π/(2n + 1)). (3.15)

The second test matrix is an n × n tridiagonal Toplitz matrix of the form

A =























b a

c b a

. . .
. . .

. . .

c b a

c b























n×n

where a, b, and c ∈ R and a 6= c 6= 0. (3.16)
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The eigenpairs of this matrix can be calculated by the formula given [23]. For each

eigenvalue λj, 1 ≤ j ≤ n, we have

λj = b + 2a
√

c/a cos(jπ/n + 1), (3.17)

and for each eigenvector,

xj =























(c/a)(1/2) sin (1jπ/(n + 1))

(c/a)(2/2) sin (2jπ/(n + 1))

(c/a)(3/2) sin (3jπ/(n + 1))

...

(c/a)(n/2) sin (njπ/(n + 1))























.

Observe that from equation (3.17), A possesses a set of n distinct eigenvalues; thus, A is

diagonalizable. The proof of the formula in equation (3.17) and the diagonalizability are

mentioned in [23].

Next, we use an n × n perturbation matrix defined as

Pnω =























0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

ω 0 0 · · · 0























n×n

. (3.18)

The eigenvalues of Pnω can be computed via the formula mentioned in [12],

λk = n
√

ωe(2kπi/n), k = 1, 2, . . . , n. (3.19)
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In particular, the Perron root of this matrix is the maximum of λk or when k = n. Clearly,

if we choose ω = (ǫ)n, the Perron root of this matrix is ǫ. Moreover, if we keep decreasing

the value of ω, not only we can test for the convergence but we can also test the algorithm

for the accuracy. This matrix is also used by the authors of [17] to test for the accuracy of

their algorithm.

The results using each of the test matrices as an input are shown in the next section.

3.5 Experiments and Results

We have extensively tested our algorithm on various nonnegative irreducible matrices.

The experiments are performed using Matlab version 6.5 on a Power PC G4 with processor

868 MHz and memory 1.5 GB with stopping criteria tol = 10−14. Our numerical results are

presented and compared to Noda’s algorithm in [25], Elsner’s algorithm in [10], modified

Elsner’s algorithm in [17], and the power method with Collatz’s formula.

Experiment I : Let A be a nonnegative irreducible matrix of order 8 given below. Note

that this matrix is also used as a test matrix by the author of [18].

A =











































8 6 3 5 7 0 7 1

0 7 3 8 5 6 4 1

1 2 6 1 3 8 8 7

2 8 4 0 7 7 8 2

2 4 6 2 5 7 6 5

4 1 0 4 8 4 8 2

3 1 6 6 4 5 5 0

0 1 1 6 7 0 3 4











































Using eig(A) command in Matlab, this matrix has a single dominant eigenvalue denoted
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by λ1 = 33.2418. All algorithms produce the same Perron root as the Matlab eig command.

The power method with Collatz’s formula perform the best since A is small and the gap

between ρ(A) and the subdominant eigenvalue is large.

Table 3.1: Results of experiment I.
Algorithm Time(sec) Iterations Max Eigenvalue

Noda 0.01864 5 33.2418
Elsner 0.01343 4 33.2418

Mod Elsner 0.01932 3 33.2418
Our 0.01813 3 33.2418

Power Method 0.00161 21 33.2418

Experiment II : We use a positive random matrix which is generated by the rand(n, n)

command in Matlab. In addition, we randomly replace some entries by 0 to create a new

random nonnegative irreducible matrix. Table 3.2 shows the results when we apply all

algorithms to the nonnegative random matrix size of n = 3000.

Table 3.2: Results of experiment II.
Algorithm Time(sec) Iterations Max Eigenvalue

Noda 114.5173 4 1.500039943045885e+03
Elsner 114.3617 4 1.500039943045886e+03

Mod Elsner 126.3965 4 1.500039943045898e+03
Our 58.0162 2 1.500039943045885e+03

Power Method 8.8956 8 1.500039943045885e+03

Experiment III : We use the matrix mentioned in the equation (3.14) of order n.

First, consider when n = 6, we see that
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A6 =

































1 1 1 1 1 1

1 2 2 2 2 2

1 2 3 3 3 3

1 2 3 4 4 4

1 2 3 4 5 5

1 2 3 4 5 6

































.

Applying the formula from equation (3.15), we obtain that the exact value of ρ(A6) =

17.2068572.

Table 3.3: Results of experiment III when n = 6.
Algorithm Time(sec) Iterations Max Eigenvalue

Noda 1.4299e-03 5 1.720685726740094e+01
Elsner 1.2319e-03 5 1.720685726740094e+01

Mod Elsner 5.4510e-03 6 1.720685726740095e+01
Our 1.8220e-03 3 1.720685726740094e+01

Power Method 1.1249e-03 9 1.720685726740095e+01

Next, we consider the case when n = 1000. The exact value of ρ(A1000) = 405690.203.

Table 3.4 shows the results of all algorithms on A1000.

Table 3.4: Results of experiment III when n = 1000.
Algorithm Time(sec) Iterations Max Eigenvalue

Noda 7.4830 5 4.056902039587474e+05
Elsner 7.5037 5 4.056902039587469e+05

Mod Elsner 8.1742 5 4.056902039587484e+05
Our 4.7143 3 4.056902039587469e+05

Power Method 1.4475 12 4.056902039587474e+05

Observe that the value of ρ(An) grows quickly as n increases. All algorithms are able to

compute the actual Perron root. To see which algorithm obtains better results, we increase

the size of this matrix to n = 2000, and n = 3000. The result are shown in table 3.5 and

table 3.6 respectively.
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Table 3.5: Results of experiment III when n = 2000.
Algorithm Time(sec) Iterations Max Eigenvalue

Noda 54.5220 5 1.6219e+06
Elsner 46.9695 5 1.6219e+06

Mod Elsner 49.0124 5 1.6219e+06
Our 28.8379 3 1.6219e+06

Power Method 6.1329 13 1.6219e+06

Table 3.6: Results of experiment III when n = 3000.
Algorithm Time(sec) Iterations Max Eigenvalue

Noda 174.8943 6 3.6488e+06
Elsner 146.6018 5 3.6488e+06

Mod Elsner 149.7228 5 3.6488e+06
Our 88.4873 3 3.6488e+06

Power Method 9.69139 8 3.6488e+06

As the size of A increases, we see that our algorithm gives a better result than other

algorithms.

Experiment IV : We consider the results for the computation of the Perron root of

a nonsymmetric tridiagonal Toplitz matrix in the equation (3.16) which can be represent

by T (c, b, a, n) in the section 3.4. In this experiment, we use c = 2, b = 8, a = 5, and

n = 800. Refer to the formula in equation (3.16), the Perron root of T (2, 8, 5, 800) is ρ(T ) =

1.432450667579053e + 01, where the second largest eigenvalue is close to ρ(T ).

Table 3.7: Results of experiment IV.
Algorithm Time(sec) Iterations Max Eigenvalue

Noda 99.131 119 1.432450667579053e+01
Elsner 104.5101 118 1.432450667579053e+01

Mod Elsner 104.2466 119 1.432450667579053e+01
Our 56.1995 66 1.432450667579053e+01

Power Method Does not converge

In addition, we extensively tested our algorithm on different tridiagonal Toplitz matrices

with different sizes and different values of a, b, and c. The results of these experiments are

similar to one given in the table 7. The computational time and the number of iterations of
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our algorithm are roughly about half of other algorithms required. In addition, the power

method with Collatz’s formula does not converge.

In the next experiment, we run all algorithms on the perturbation matrix P in the equa-

tion (3.18) which is a nonnegative and irreducible matrix. For each case in this experiment,

we increase the size n and decrease the value of ω. The authors of [17] also use these matrices

to test the accuracy of their algorithm.

Experiment V : This is the perturbation matrix whose size n = 20 and ω = (0.5)20

(note that (0.5)20=9.5367e-007 ) defined as

P20(0.5)20 =























0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
...

...

0 0 0 · · · 1

(0.5)20 0 0 · · · 0























20×20

. (3.20)

Using the formula given in the section 3.4, the Perron root of this matrix is ρ = 0.5.

Table 3.8: Results of experiment V on P20(0.5)20 .

Algorithm Time(sec) Iterations Max Eigenvalue

Noda 0.0236 14 0.5
Elsner 0.0172 13 0.5

Mod Elsner 0.0362 12 0.5
Our 0.0167 8 0.5

Power Method Does not converge

Next, we consider P200(0.5)20 . Note that, the Perron root of this matrix is ρ = 9.330329915368075e−

01.
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Table 3.9: Results of experiment V on P200(0.5)20 .

Algorithm Time(sec) Iterations Max Eigenvalue

Noda 0.4187 13 9.330329915368074e-01
Elsner 0.4578 13 9.330329915368074e-01

Mod Elsner 0.3629 12 9.330329915368074e-01
Our 0.3528 8 9.330329915368073e-01

Power Method Does not converge

Interestingly, modified Elsner, Elsner, and Noda’s algorithm converge at the rate of

quadratic [10]. Our algorithm overcomes all algorithms especially for a larger size of a

nonnegative irreducible matrix. Below is the result when we test all algorithms on the

perturbation matrix P500(0.5)20 with the size of n = 500 and ω = (0.5)20. The exact Perron

root is ρ = 9.726549474122856e− 01.

Table 3.10: Results of experiment V on P500(0.5)20 .

Algorithm Time(sec) Iterations Max Eigenvalue

Noda 3.1728 13 9.726549474122854e-01
Elsner 3.0301 12 9.726549474122828e-01

Mod Elsner 3.5694 13 9.726549474123013e-01
Our 1.8613 7 9.726549474122880e-01

Power Method Does not converge

Next, we look at the case when n = 1000 and ω = 1e − 16. The exact Perron root of

P1000(1e−16) is ρ = 9.638290236239705e− 01.

Table 3.11: Results of experiment V on P1000(1e−16).

Algorithm Time(sec) Iterations Max Eigenvalue

Noda 31.3633 22 9.638290236239706e-01
Elsner 50.7471 35 9.638290236239713e-01

Mod Elsner 37.0038 24 9.638290236239708e-01
Our 19.4263 13 9.638290236239706e-01

Power Method Does not converge

The result from experiments I, II, and III indicate that if we have a nonnegative irre-

ducible matrix whose Perron root is well conditioned, then the power method with Collatz’s
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formula produce the best result as we expected. However, our algorithm also produces good

results compare to the power method and other algorithms; especially, when it computes the

Perron root of large size matrices.

Furthermore, the results from experiment IV and V demonstrate that for a nonnegative

irreducible matrix whose eigenvalues are ill conditioned, the power method does not converge,

while other algorithms converge to the Perron root quickly. Nevertheless, when we increase

the size of the matrix, we observe that the results from our algorithm are better than Noda,

Elsner, and modified Elsner’s algorithm.
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Chapter 4

Conclusions

In this dissertation we explored various methods for computing the Perron root of non-

negative irreducible matrices. We produced a new algorithm. The proposed algorithm is

based on the reciprocal of Collatz’s formula and the inverse iteration method. We have

shown how our algorithm overcomes the three best known algorithms that use an inverse it-

eration technique which converge to the Perron root at the rate of quadratic [10]. Moreover,

our algorithm converges to the Perron root faster than other algorithms that employed the

diagonal transformation technique and the Perron complementation idea.

We then took a closer look at the computational time of all algorithms including our

algorithm on nearly reducible matrices. From all experiments, we found that our algorithm

produced the best results. The experiments suggested our algorithm converges to the Perron

root of nonnegative irreducible matrices at least quadratically.

We also proved several results concerning the monotonicity of the sequence approximating

the Perron root and the convergence of our algorithm. We hope that these results motivate

the applications of the Perron root of nonnegative matrices. We predict, with increasingly

use of nonnegative matrices in various applications, our algorithm will be one of the best

choice among others.
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